
Concept Drift Detection
using Supervised Bivariate Grids

Christophe Salperwyck
EDF R&D

1 avenue du Général de Gaulle
92140 Clamart, France

Marc Boullé and Vincent Lemaire
Orange Labs

2 avenue Pierre Marzin
22300 Lannion, France

Abstract—We present an on-line method for concept change
detection on labeled data streams. Our detection method uses
a bivariate supervised criterion to determine if the data in two
windows come from the same distribution. Our method has no
assumption neither on data distribution nor on change type. It has
the ability to detect changes of different kinds (mean, variance...).
Experiments show that our method performs better than well-
known methods from the literature. Additionally, except from the
window sizes, no user parameter is required in our method.

I. INTRODUCTION

Numerous actors from the “Information Technology” field
have to deal with massive data as Google or Yahoo since they
collect data coming from their user usage. Telecommunication
companies also have millions of customers and have to deal
with massive data to manage their telecommunication network
and/or their customer relationship. The volume of these data
continues to grow quickly and is not any more compatible with
most of the off-line methods, which need to load all the data
in memory. In these conditions, a solution could be to process
data as they arrive. These data, called streaming data, are seen
only once and in their order of arrival.

In supervised classification, the concept to learn P (C|X)
is the conditional probability of the class of C knowing the
data observations X . A data stream could be non-stationary,
includes concept drift, if the process which generate the data
evolves over the time. In this case the classifier has to adapt
gradually as the concept changes.

In this paper we propose a new method to detect the
concept drift based on the monitoring of the data stream
variables. Our method uses two sliding windows and is able
to identify if the data of these two windows come from the
same distribution or not. This method is able to detect different
aspects (mean, standard deviation...) of the drift conditionally
to the classes C of the supervised classification problem. This
method has no assumption neither on the data distribution nor
on the change type. Besides, except the window sizes, this
method has no user parameter.

In the next section, the related work on change detections
is described. The section III presents our detection method
with an experimental validation on artificial data. The section
IV shows how our detection method can be integrated on the
top of a classifier to manage concept drifts. The last section
concludes this paper.

II. RELATED WORK

The literature on concept drift detection or concept drift
management is abundant [1], [2]. The methods on drift man-
agement can be split into several families: drift detection,
ensemble of classifiers, samples weighting...

The goal of the supervised classification on data stream is
to keep the performance of the classifier over the time, while
the concept to learn is changing. In this case, literature contains
two sub-families:

• methods without a classifier: authors use mainly the
distributions of the explanatory variables of the data
stream: P (X), P (C), P (X|C)

• methods using a classifier: authors use mainly the
performances of the classifier related to the estimation
of P (C|X).

From a Bayesian point of view all these methods try to
detect the variation of a part of:

P (C|X) = P (C)P (X|C)/P (X) (1)

with

1) P (C) the priors of the classes in the data stream
2) P (X) the probability (distribution) of the data
3) P (X|C) the conditional distribution of the data X

knowing the class C.

The method proposed in this paper is able to detect the
variation in the three terms P (C), P (X) and P (X|C),
which to our knowledge does not exist in the literature. The
proposed method has few assumption on the data distribution,
is resilient to outliers, does not use user parameter and has a
good regularization to avoid over-fitting.

The literature on concept drift is large, the interested reader
may find in [2] an overview of the existing methods. In the
following subsections we present only a part of the literature
related to drift detection methods applied on one of these three
terms: P (C), P (X) and P (X|C). The presented methods will
be used in comparison to our method in this paper.

A. Methods without a classifier

The methods without a classifier are mainly methods based
on statistical tests applied to detect a change between two
observation windows.

a) Welch’s t test: this test applies on two samples of
data of size N1 and N2 and is an adaptation of the Student’s
t test. This test is used to statistically test the null hypothesis
that the means of two population X1 and X2, with unequal
variances (s21 and s22), are equals. The formula of this test is:

p-value = (X1 −X2)/

(√
(s21/N1) + (s22/N2)

)
(2)

This test returns a p-value which allows or not to reject
the null hypothesis.

b) Kolmogorov-Smirnov’s test: this test is often used
to determine if a sample follow (or not) a given law or
if two samples follow the same law. This test is based
on the properties of their empirical cumulative distribution
function. We will use this test to check if two samples
follow the same law. Given two samples of size N1 and
N2 having respectively cumulative distribution function F1(x)
and F2(x), the Kolmogorov-Smirnov distance is defined as:
D = max

x
|F1(x)− F2(x)|. The null hypothesis, assuming that

the two samples follow the same law, is rejected with a
confidence of α if:

(√
(N1N2)/(N1 +N2)

)
D > Kα. Kα can

be found in the Kolmogorov-Smirnov table.

c) MODL P (W |Xi): this method has been proposed
by [3] to detect the change while observing a numerical
variable Xi in an unsupervised setting. This method addresses
this problem as a binary classification problem. The method
uses two windows to detect the change: (1) Wref contains the
distribution of Xi at the beginning of the stream and is used as
a reference window; (2) Wcur a current (sliding or jumping)
window which contains the current distribution. The examples
belonging to Wref are labeled with the class “ref” and the
ones belonging to Wcur are labeled with the class “cur”. This
two labels constitute the target variable W ∈ {Wref ,Wcur} of
the classification problem. All these examples are merged into
a training database and the supervised MODL discretization [4]
is applied to see if the variable Xi could be split in more than a
single interval. If the discretization gives at least two intervals
then there are at least two significantly different distributions
for Xi conditionally to the window W . In this case the method
detects that there is a change between Wref and Wcur.

B. Methods using a classifier

Methods using a classifier monitor the performance of the
classifier and detect a concept drift when the performance
varies significantly. These methods assume that the classifier is
a stationary process and data are independent and identically
distributed (iid). Though, in case of a data stream these
hypothesis are not valid [5], these methods proved their interest
on diverse application [6], [7], [1]. The two most popular
methods using a classifier of the literature are described below.

d) DDM: this method of Gama et al. [6], detects
a concept drift by monitoring the classifier accuracy. Their
algorithm assumes that the binary variable which indicates that
the classifier has correctly classified the last example follows
a binomial distribution law. This law can be approximated
as a normal law when the number of observations is higher
than 30. The method estimates after the observation of each
sample of the data stream the probability of misclassification

pi (pi corresponds also to the error rate) and the corresponding
standard deviation si =

√
pi(1− pi)/i. A significant increase

of the error rate is considered by the method as the presence
of a concept drift.

The method uses two decision levels: a “warning” level
when pi + si > pmin + 2 · smin and a “detection level” when
pi + si > pmin + 3 · smin (after the last detection, every time
a new example i is processed pmin and smin are updated
simultaneously according to (pmin + smin) = min

i
(pi + si)).

The examples seen between the warning level and the detection
level are used to train a new classifier which will replace
the current classifier if the detection level is reached. This
mechanism allows not to start from scratch when the decision
level is reached (if the concept drift is not too sudden).

e) EDDM: this method [7] uses the same algorithm but
with another criterion to set the warning and detection levels.
This method uses the distance between the classification error
rather the error rate. This distance corresponds to the number
of right predictions between two wrong predictions.

EDDM computes the mean distance between the errors p′i
and the corresponding standard deviation s′i As for DDM a
warning level and a detection level are defined, respectively of
(p′i+2 · s′i)/(p′max+2 · s′max) < α and (p′i+2 · s′i)/(p′max+
2 · s′max) < β. In the experimental part the authors of EDDM
use α = 90% and β = 95%. On synthetic datasets EDDM
detects faster than DDM the gradual concept drift.

III. A NEW SUPERVISED DETECTION APPROACH

A. Presentation

The concept drift detection method presented in this paper
is dedicated to supervised classification. The goal is to propose
a method that is able to differentiate if the examples belonging
to a reference window, Wref and the examples belonging to
a current window, Wcur, come from the same distribution
conditionally to the class. One contribution of this paper is
to pose this problem, similarly as in [3], as a supervised
classification problem. We define:

• each sample of the data stream is described by d
explanatory variables (Xi, i ∈ {1, ..., d}) and a class
variable C with J values

• the examples get a label W corresponding to their
window (W ∈ {Wref ,Wcur})

• the explanatory variables are assumed to be indepen-
dent conditionally to the classes

• the test detection is performed for each variable Xi on
the data coming from the two windows (Wref ,Wcur)

The window Wref contains observations of the initial
concept and is not updated while there is no drift detected.
The second window Wcur is a sliding (or jumping) window on
the data stream for the current concept. The reference window
represents the normal operation of the observed system. The
current window characterizes the present state of the system.
Defining these two window sizes is the only required adjust-
ment from the user.

TABLE I. TABLE USED TO TRAIN THE CLASSIFIER

X1 X2 ... Xi ... Xd C W

Wref

1 C ∈ {1, ..., J} Wref

2 C ∈ {1, ..., J} Wref

3 C ∈ {1, ..., J} Wref

... C ∈ {1, ..., J} Wref

|Wref | C ∈ {1, ..., J} Wref

Wcur

1 C ∈ {1, ..., J} Wcur

2 C ∈ {1, ..., J} Wcur

3 C ∈ {1, ..., J} Wcur

... C ∈ {1, ..., J} Wcur

|Wcur| C ∈ {1, ..., J} Wcur

The first step is to define the position and the size of the
windows1 and to collect information in a table as represented
in Table I. The examples of the data stream are then labeled
according to their window (column W in the Table I). The
examples belonging to the reference window (respectively to
the current window) are labeled to the class Wref (respectively
to the class Wcur). The purpose is to exploit a supervised
classifier to quantify the change in the distribution.

The following situations give the intuition of this kind of
approach: (i) Assuming that the joint distribution P (X,C) of
examples has not changed between the two windows, classes
(in the sense of W) are not separable. In that case, any
robust classifier is not able to differentiate the two classes;
(ii) Assuming that the joint distribution P (X,C) has changed,
the examples of the classes Wref and Wcur do not have the
same distribution. In that case, the classifier should be able to
differentiate the classes. We are interested in the probability of
the window knowing simultaneously the class C and the ex-
planatory variable Xi: P (W |C,Xi). We need a method able to
accurately quantify the difference between P (Wref |C,Xi) and
P (Wcur|C,Xi). Supervised bivariate discretization / grouping
methods are methods which can be used in this context.

Among many methods in the literature, we chose to use
the MODL grid [8] for its characteristic: no a priori on the
data distribution, no prior knowledge, resilient to outliers, no
user parameter2 and a good regularization to limit over-fitting.
The cross-product of the discretization / grouping on each
feature forms a multi-dimensional data grid. The correlation
between the cells of this data grid and the output values allows
the joint predictive information to be quantified. The trade-
off between information and reliability is established using a
Bayesian model selection approach embedded in the MODL
criterion.

The MODL criterion estimates the cost of a model c(M)
knowing the data D. The value of the criterion c(M) is related
to the probability that a data grid model M explains the output
variable given the input variables: c(M) = log(P (M |D)).
This criterion is not detailed in this paper but interested readers
can find all the details in [8]. For our drift detection method
we have two possibilities: either Xi is a numerical variable or
Xi is a categorical variable. In both cases C is a categorical
variable. The numerical case corresponds to a mixed case of
one categorical input variable C with J categories and one
numerical input variable Xi, in that case P (M |D) is defined

1A temporal window is defined by a “start date” and an “end date”, and
includes the examples arrived during this time interval

2Making classifier simpler is an important point in the context of data
stream. Constant manual adjustment of models is inefficient and with increas-
ing amounts of data is becoming infeasible (see the discussion in [9])

by the equation 5 page 15 in [8]. The second case corresponds
to two categorical input variables: C and Xi, in that case
P (M |D) is defined by the equation 6 page 15 in [8].

The criterion c(M) can also be interpreted as the ability
of a data grid model to compress the output classes given the
input values. When the joint distribution of (Xi, C) does not
change between the reference and the current window, it is
impossible to separate the type of stream regime exploiting
the variables jointly. By contrast, if the joint distribution of
(Xi, C) have significantly changed, the joint distribution of
these variables can be exploited to detect the type of the stream
regime: the grid has more than one cell.

Let M∅ be the null model that discretizes the joint distri-
bution (X,C) into a grid of a single cell. M∅ represents the
coding length of the stream regime type without exploiting the
input joint distribution. In the case where the joint distribution
(X,C) does not change between the reference and the current
window, it is impossible to separate the stream regime type:
the null model is the best one. The compression gain [8] is
defined as follows:

Gain(M) = 1− c(M)

c(M∅)
(3)

In the experiments performed in this paper we use the value
Gain(Map): the compression gain of the most probable model
given the data Gain(Map) is 0 when it is not possible to
separate the stream regime type. This value is strictly positive
when there is a significant difference in the stream regime
coming from the two windows.

Let the vertical axis of a grid represents the partition over C
and the horizontal axis the partition over Xi. If P (W |C,Xi)
changes only conditionally to Xi the grid will be the same
as in [3] and we will able to detect covariate shift over Xi:
the grid will have only columns. If P (W |C,Xi) changes only
conditionally to C the grid will allow to detect changes over
P (C): the grid will have only lines. From a Bayesian point of
view (see Section II) we will be able to detect the variation in
the three parts of P (C|X) (equation 1).

For our problem of concept drift handling, we detect a
change if the target variable W can be separated using the
values of Xi and C. In that case the detection is represented by
a grid with more than one cell, otherwise there is no detection.
Figure 1 illustrates the detection on a dataset with an explana-
tory numerical variable X1 and 2 classes C ∈ {C1, C2}. The
data taken from the Wref are represented with green points
and the ones from Wcur with red points. We search a MODL
grid at two different periods of time, t1 and t2, in the data
streams to check if the data distribution has changed. Data in
Wref stays the same for both periods and only data in Wcur

changes. For the period t1, on the top of the figure (where
we detail the complete process), the MODL grid has just one
cell since no split can be found to explain the data distribution
conditionally to W . For the period t2, on the bottom of the
figure (where we show only the resulting grid), the MODL grid
has 6 cells since knowing W can explain the data distribution.

B. Implementation details

1) Windows size: in the method proposed in this paper
the size of the windows is a trade-off between reactivity and

0 77 55 48

X1

X1
0 77

Grid with a single cell: no change detected

Grid with 6 cells: change detected on P(W|X1,C)

C2

C2

C1

X1

C1

0 77

X1
0 77

C2

C1

Class Wcur Class Wref

Wref |X1,C Wcur |X1,C

Merge of Wref and Wcur

X1

C1

0 77

Build MODL grid t1

First case: same distribution

t2

Second case: distribution in Wcur changed X1
0 77

Wcur |X1,C

C2

Fig. 1. On the top no change is detected in the data distribution as the grid
has just one cell. On the bottom the grid has 6 cells and therefore a change
on P (W |C,Xi) is detected.

robustness. On one hand a large window provides a better
confidence on a potential concept drift, on the other hand a
small size is more reactive. From our point of view the window
size setting is problem dependent. However the method could
be applied using several sizes of windows in parallel.

2) Complexity: data grid models are optimized using a
greedy bottom-up strategy. The algorithm starts from a fine
grained partition of the variables and evaluates all merges
between groups of values in the categorical case or intervals
in the numerical case. The best merge is performed and the
process iterates until there is no more improvement on the
optimized criterion. A straightforward implementation of the
greedy heuristic remains a hard problem with polynomial
time complexity. Advanced optimizations combined with so-
phisticated algorithmic data structures are exploited to get a
O(N

√
N logN) time complexity and O(N) space complex-

ity, where N is the number of data points in the window.
These algorithms, fully detailed in [11], mainly exploits (i)
the sparseness of the grid, (ii) the additivity property of the
optimized criterion and (iii) starts from non-maximal grained
grid models using pre and post-optimization heuristics.

3) Independence assumption: the potentially high rate of
the input data stream leads to have a method with a low
complexity. That is the reason why we have chosen to simplify
the initial learning task into d univariate detection problems

which are described above in this paper. While this simplifica-
tion may seem drastic, this methodological choice provides a
pragmatic response to the curse of dimensionality. In practice,
few cases of change in the distribution cannot be detected
by examining each variable individually. This naive Bayes
assumption implies that the complexity grows linearly with
the number of variables (d).

For example, the naive Bayes (NB) classifier has proved to
be very effective in many real data applications [12], [13]. It
is based on the assumption that the variables are independent
within each class, and solely relies on the estimation of
univariate conditional probabilities, which make its training
time complexity linear w.r.t. the number of input variables. In
our method, we solely rely on the estimation of P (W |Xi, C)
and expect to get the effectiveness of the naive Bayes classifier.

C. Experimental validation: detection without a classifier

In this section, we focus on how our new method performs
on artificial datasets generated with different kinds of change.
The detection is performed on only one variable Xa for those
experiments. Since we made the assumption of independence
between variables, testing on more variables would not give
better insight on the capabilities of our method. The first
section studies the robustness when the concept is stationary,
the second section the time needed to detect abrupt changes
and the last section the ability to deal with different kinds
of change. The experiments compare the methods from the
literature described previously and our new method:

• Welch’s t test with statistical significance of 1%, 5%
and 10%

• Kolmogorov-Smirnov (KS) with statistical signifi-
cance of 1%, 5% and 10%

• supervised MODL method on P (W |Xi)

• supervised bivariate MODL method on P (W |Xi, C)

1) Robustness in the stationary case: The goal of this
first experiment is to study the robustness of the methods
when the data stream is stationary. In that case no change
should be detected. The reference and current windows have
the same size. The class distributions follow a Gaussian with
the following parameters: (µ1 = −1, σ1 = 1) for the class
with label 1, and (µ2 = 1, σ2 = 1) for the class with label 2.
Different window sizes are used: from 10 to 5,000 examples.
All experiments are repeated 1,000 times.

Results are presented in the Table II. They confirm the
robustness of our bivariate MODL method on P (W |Xa, C) as
no detection were observed. The MODL method on P (W |Xa)
[3] has few false detections but they mainly happen on small
window sizes. The other tests behave well with small statistical
significance (1%). For higher significance value (10%), much
more false detections occur for Welch’s t test and Kolmogorov-
Smirnov test.

2) Abrupt change detection: the goal of this experiment
is to measure the number of examples needed to detect a
change depending on the window sizes and methods. All these
methods are able to detect the abrupt change used in this
section but here we focus on how fast they can perform this
detection.

TABLE II. NUMBER OF FALSE DETECTIONS PER METHOD AND
WINDOW SIZE FOR 1,000 EXPERIMENTATIONS.

method→ Welch Welch Welch KS KS KS MODL MODL
↓ size (1%) (5%) (10%) (1%) (5%) (10%) P (W |Xa) P (W |Xa,C)

10 0 9 20 0 0 8 3 0
20 0 7 13 0 5 22 4 0
30 1 6 19 0 3 12 3 0
50 0 5 21 0 2 17 6 0
100 0 3 19 0 4 20 1 0
200 0 5 28 0 5 13 0 0
300 0 6 16 1 5 21 0 0
500 1 6 22 2 7 18 1 0

1000 1 8 25 0 5 24 0 0
2000 0 4 13 0 7 20 0 0
5000 0 6 26 0 7 19 0 0

TABLE III. MEAN DELAY TO DETECT A CHANGE FOR A GIVEN
METHOD AND A GIVEN WINDOW SIZE ON 1,000 EXPERIMENTS.

method→ Welch Welch Welch KS KS KS MODL MODL
↓ size (1%) (5%) (10%) (1%) (5%) (10%) P (W |Xa) P (W |Xa,C)

10 15 14 14 15 15 15 15 15
20 29 26 24 29 28 26 28 29
30 41 36 33 43 40 36 41 40
50 62 53 49 67 57 54 65 58

100 103 90 86 110 96 90 109 96
200 178 160 150 185 166 160 195 163
300 241 218 211 252 227 214 269 218
500 367 337 321 375 344 330 404 325
1000 665 620 598 678 636 613 719 600
2000 1224 1188 1154 1260 1188 1174 1334 1120
5000 2886 2766 2741 2911 2781 2756 3081 2671

The reference and current windows have the same sizes.
Only one feature Xa is used. Concept 1 is defined with
(Xa|class 0) following N0(µ = −1, σ = 1) and (Xa|class 1)
following N1(µ = 1, σ = 1). The change is simulated with
a modification of the parameters. After the change we have
the following concept 2 defined with (Xa|class 0) following
N0(µ = 2, σ = 0.5) and (Xa|class 1) following N1(µ =
0, σ = 1).

The window sizes are from 10 to 5,000 examples and all
the experiments are repeated 1,000 times. The change position
within the window is taken randomly as in a real scenario
this position is unknown. The obtained results show the mean
delay to detect the change depending on the window size and
the chosen method.

The results are presented in the Table III. With a window
size smaller than 100 examples, we observe that it is difficult
to detect the change. From a window size of 200 examples, the
mean delay is less than the window size for all the methods.
Increasing the statistical significance threshold to 5% and 10%
for Welch’s t test and Kolmogorov-Smirnov test decreases
the delay. The method based on MODL P (W |Xa) is slightly
longer to detect than the parametric methods configured to 1%.
However if we compare with our method MODL P (W |Xa, C)
it performs better than the two other methods configured with
1%.

3) Gradual Change Detection: the goal of this experiment
is to study the behavior of the methods when the concept drift
is gradual. This behavior is examined through the variation
of the criteria used by each method versus the “quantity of
change”. These criterion are :

• for the Welch’s test: the p-value of the test (we took
the log to ease the comparison)

Fig. 2. Evolution of the different criterion versus the amount of change

• for Kolmogorov-Smirnov (KS): the Kolmogorov-
Smirnov distance

• for the supervised MODL method on P (W |Xi): the
compression gain

• for the supervised bivariate MODL method on
P (W |Xi, C): the compression gain

For this experiment two concepts are used. Concept 1 is
defined with (Xa|class 0) following N0(µ = 0, σ = 1) and
(Xa|class 1) following N1(µ = 0, σ = 1). Concept 2 is
defined with (Xa|class 0) following N0(µ = 0, σ = 1) and
(Xa|class 1) following N1(µ = 4, σ = 1).

The reference window contains the concept 1. The current
window contains the concept 1 and a percentage of the concept
2 to simulate the quantity of change (from 0% to 100% with
an incremental step of 5%).

The results of this experiment are presented in the Figure
2. We can observe that the variation of the four criteria
are proportional to the amount of change. For this gradual
detection change experiment with a simple drift of the mean
of class 1, all methods have a similar behavior. Next section
investigates on more complex pattern changes.

4) Detection of different types of change: the purpose of
the experiments presented in this section is to observe which
types of change (mean, variance, classes inversion) the studied
methods are able to detect. For all types of change, the concept
to learn at the beginning is the concept 1 defined with two
classes: (Xa|class 0) follows a distribution N0(µ = 0, σ =
0.5) and (Xa|class 1) follows a distribution N1(µ = 2, σ = 1).
The different types of change are applied on concept 1 to
experiment the behavior of the different methods (see Figure
3):

• Change in the mean (Figure 3-a): this change
is simulated by changing the mean in the class 0
distribution: from 0 to 1. This change produces the
concept 2: (Xa|class 0) follows a distribution N0(µ =
1, σ = 0.5) and (Xa|class 1) follows a distribution
N1(µ = 2, σ = 1).

Fig. 3. Types of change studied: (a) change in the mean, (b) change in the
variance, (c) class inversion.

• Change in the variance (Figure 3-b): this change
is simulated by changing the variance in the class 1
distribution: from 0 to 0.5. This change produces the
concept 2: (Xa|class 0) follows a distribution N0(µ =
0, σ = 1) and the (Xa|class 1) follows a distribution
N1(µ = 2, σ = 1).

• Class inversion (Figure 3-c): this change is sim-
ulated by the inversion of the labels of the concept
1

TABLE IV. NUMBER OF DETECTIONS PER CHANGE TYPE FOR THE
DIFFERENT METHODS.

Method Mean Variance Inversion

Welch (1%) 1000 0 0
Welch (2%) 1000 0 0

Welch (10%) 1000 19 10
KS (1%) 1000 998 0
KS (2%) 1000 1000 0
KS (10%) 1000 1000 15

MODL P (W |Xa) 1000 1000 1
MODL P (W |Xa, C) 1000 1000 1000

In these experiments, for all the change types, the sizes
of the windows are set to 1,000. This value corresponds to a
good trade-off between reactivity and robustness according to
the results above (see Table III and Table II). The reference
window contains the concept 1 and the current window con-
tains the concept 2 The results obtained in terms of number
of detection over 1,000 experiments are presented in Table IV.
The best methods are those able to find most of the changes.

Changes only on X: all methods are able to detect
in a reliable way a change in the mean. As expected the
Welch’s test is not able to detect a change in the variance. A
small number (19) of detections appears but they correspond
to false detections and not to a change in the variance.
The Kolmogorov-Smirnov’s test and the MODL detection
P (W |Xa) are able to detect changes in the mean and variance.

Changes on X,Y : the Welch’s test, the Kolmogorov-
Smirnov’s test and the MODL detection P (W |Xa) are not able

TABLE V. SYNTHETIC SUMMARY OF THE COMPARISONS

Criteria → False Change in Change in Class
Method ↓ detections the mean the variance inversion

Welch (1%) + + - -
Welch (2%) - + - -
Welch (10%) - - + - -

KS (1%) + + + -
KS (2%) - + + -

KS (10%) - - + + -
MODL P (W |Xa) + + + -

MODL P (W |Xa, C) + + + + +

to detect class inversion. Contrary to these detection methods,
the MODL detection P (W |Xa, C) based on a supervised grid
is able to detect the inversion and these experiments confirm
its ability to detect a change on X , C, or X,C.

D. Discussion

The proposed method based on MODL P (W |Xa, C) is
robust: it does not detect changes on a stationary data stream.
The methods based on the Welch’s test and the Kolmogorov-
Smirnov’s test are interesting when they are used with a
high confidence value. However the false detection increases
quickly when the confidence value is lower (see Table IV).
Our method is also faster to detect the changes than the two
methods based on statistical tests (see Table III). To obtain the
same reactivity, the confidence value has to be decreased but
this leads to a loss of robustness. Our method is both robust
and fast to detect a change. Besides it is able to detect different
types of change: in the mean, in the variance and in inversion
of the pattern. A synthetic summary of the comparisons is
presented in the Table V.

IV. APPLICATION TO CONCEPT DRIFT MANAGEMENT

The concept drift detection is not intrinsically a final goal.
The detection aims to be used to react to the changes. As
described in [2], [15], having a detection method on a data
stream gives several possibilities to deal with a change:

i: retrain the model from scratch;

ii: adapt the current model;

iii: adapt data statistics or data summaries on which the
model is based on;

iv: weight, adapt or use a “sequence” of models trained
over the time.

The purpose of this section is to propose a method which
integrates the detection method presented above in this paper in
an algorithm able to manage the concept drift. The objective
is to replace the current model when the method detects a
change.

A. Algorithm MDD

We integrated our detection method in an algorithm named
MDD: MODL Drift Detection. This algorithm is presented
below in Algorithm 1.

In this algorithm the replacement of the current classifier
(Mcurrent) is done after a detection on at least one of the
explanatory variables using the bivariate discretization method

Notations:
• x: an example of the data stream
• Wref : reference window of size |Wref |
• Wcur : current jumping window of size |Wcur|
• size(W): number of elements in W
• ER.: error rate of the considered classifier
• computeER: compute error rate of the considered classifier
• Mcurrent: currently used classifier with its error rate ERMcurrent
• Mnew : new classifier trained after a detection with its error rate ERMnew
• n: number of examples used to train Mnew

• nmin: minimal number of examples before comparing ERMcurrent
with ERMnew

n← 0
while x← data stream () do

// if a Mnew exists: is it better than Mcurrent?
if isStarted (Mnew) then

n← n+ 1
ERMcurrent ← computeER (ERMactual

,Mcurrent, x)
ERMnew ← computeER (ERMnew ,Mnew, x)
train (Mnew , x)
if n > nmin and ERMnew < ERMcurrent then

Wref ← ∅, Wcur ← ∅, Mcurrent ←Mnew

ERMcurrent ← 0 , ERMnew ← 0
n← 0

// fill the windows
if size(Wref) < |Wref | then

Wref ← Wref ∪ x
else if size(Wcur) < |Wcur| then

Wcur ← Wcur ∪ x
else

// check if there is a change
G← 0
for i← 1 to d do

// compute Gi(Map) (eq. 3) for all
explanatory variables

G← G+ Gi(Map)

if G > 0 then
// drift detected: training of a new

classifier
start (Mnew)

else
// data stream is stationary: remove the

new classifier
delete (Mcurrent)

// jumping window: empty it so that it will be
refilled

Wcur ← ∅
train (Mcurrent, x)

Algorithm 1: MDD (MODL Drift Detection) algorithm
integrating the detection method to replace (or not) the
current classifier when a concept drift is detected.

“MODL P (W |Xi, C)”. This replacement is effective only
when the error rate of the new classifier (Mnew) is lower
than the error rate of the current classifier (Mcurrent). In our
experiments the error rate is computed with an exponential
moving average with the parameter α set to α = 1/|Wcur|.
The parameter nmin corresponds the minimum numbers of
examples to get before comparing the two classifiers accuracy.
The value nmin = 30 is the same as the one used by DDM and
EDDM before they try to find a concept drift and is related to
the approximation of the considered distribution by the normal
distribution. Contrary to DDM or EDDM (see Section II-B)
our algorithm MDD is not based on the performance of the
classifier, thus it is not “classifier dependent”. The train()
method in this algorithm corresponds to the train method
of the classifier chosen by the user. For example, below in
the experiments we use an Hoeffding tree or a Naive Bayes
classifier. This algorithm has a low memory footprint as it
only needs to keep the data stored in the reference and current

windows (((|Wref |+ |Wcur|) d).

B. Experimental protocol

In our MDD algorithm, the size of the two windows Wref

and Wcur is set to 1,000 samples. Two different types of
classifier were used:

• a naive Bayes classifier (NB) using an estimation of
P (X|C) taken from a two layers incremental dis-
cretization method based on order statistics [16]. The
first layer is a summary per variable which contains
an estimation of 100 quantiles. The second layer is
the MODL discretization for the numerical variables
or the MODL grouping for the categorical variables.

• a Hoeffding Tree [17] (HT) configured with a sum-
mary per variable based on 10 quantiles. This sum-
mary is used to split the leaf into decision nodes
and to provide estimations of P (Xi|C), using MODL
method, for the naive Bayes local model in each leaf.

The results presented below are those obtained on:

• the “Rotating Hyperplane” problem suggested in [14]:
the data stream contains ten explanatory variables, a
change speed of 10−3 and 10% of noise on the class
labels.

• the Random RBF problem: the data stream contains 50
centers, ten explanatory variables and a change speed
of 10−3 (as suggested in [1]).

Among the methods available in the literature to evaluate
the accuracy of a classifier on a labeled data stream [18], we
chose to use the method based on the prequential error which
interleaves the train and the test (Test-Then-Train). The error
plotted in the Figure 4 gives the mean prequential error of the
classifier between the beginning of the data stream and the
current instant t. The MDD algorithm has been implemented
in the MOA framework [19] and has a dependence to our in-
house Khiops3 software to compute the MODL grid.

C. Results

The results for the “Rotating Hyperplane” presented in
the Figure 4 show that all the 3 methods (DDM, EDDM
and MDD) on both classifiers, NB or HT, have the same
performances until respectively 100,000 (NB) and 200,000
(HT) training examples. Then

• for the Naive Bayes classifier:
◦ between 100,000 and 200,000: (i) DDM is

better (ii) the performance of MDD is stable
(iii) EDDM has a decreasing performance;

◦ between 200,000 and 680,000: (i) DDM has
a decreasing performance (ii) the performance
of MDD and EDDM are stable;

◦ between 680,000 and 1,000,000: (i) MDD and
EDDM have a small improvement in their
performance (ii) EDDM has an increasing per-
formance but its accuracy is still lower from
2% to 4% than DDM.

3www.khiops.com

 74

 75

 76

 77

 78

 79

 80

 81

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

M
e
a
n
 a

c
c
u
ra

c
y

Rotating Hyperplan (speed of 0,001) − naive Bayes classifier

MDD NB
DDM NB

EDDM NB

 66

 68

 70

 72

 74

 76

 78

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

M
e
a
n
 a

c
c
u
ra

c
y

Number of examples used to train

Rotating Hyperplan (speed of 0.001) − Hoeffding Tree

MDD HT
DDM HT

EDDM HT

Fig. 4. Mean accuracy of the three tested methods on the “Rotating
Hyperplane” data set.

• for the Hoeffding Tree classifier:
◦ between 200,000 and 600,000: the three meth-

ods are close with a small advantage to MDD;
◦ between 600,000 and 1,000,000: (i) DDM

and EDDM have globally a decreasing per-
formance (ii) the performance of MDD has a
small improvement in its performance.

The results for the “Random RBF” presented in the Figure
5 show that all the 3 methods (DDM, EDDM and MDD) on
both classifiers, NB or HT, have quite different performances:

• for the Naive Bayes classifier:
◦ between 0 and 400,000: (i) the performance of

EDDM and MDD are stable (iii) DDM has a
decreasing performance;

◦ between 400,000 and 1,000,000: (i) the perfor-
mance of DDM and MDD are stable, but the
performances of DDM is low (iii) EDDM has
a decreasing performance;

• for the Hoeffding Tree classifier:
◦ between 0 and 200,000: (i) EDDM and DDM

have a decreasing performance (ii) MDD has
an increasing performance;

◦ between 200,000 and 350,000: (i) DDM has
a decreasing performance (ii) EDDM has a
increasing performance (iii) MDD is stable;

◦ between 350,000 and 1,000,000: DDM,
EDDM and MDD are stable.

These figures shows that the proposed algorithm exhibits
stable and better performances.

To understand and explain where the differences between
the three methods come from, the Figure 6 presents the detec-
tion (red curves) versus the time t on the top for MDD, on the
middle for DDM and on the bottom for EDDM. For DDM and
EDDM which use an “alert” mechanism before the detection
represented by the blue curves. This figure helps to understand
that DDM and EDDM do not have regular detection, even
though the hyperplane has a constant rotation speed. These
two methods seems to often be “in alert” but the threshold to

 52

 54

 56

 58

 60

 62

 64

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006

M
ea

n
ac

cu
ra

cy

Random RBF (speed of 0,001) − Naive Bayes classifier

MDD NB
DDM NB

EDDM NB

 57

 58

 59

 60

 61

 62

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006

M
ea

n
ac

cu
ra

cy

Number of examples used to train

Random RBF (speed of 0,001) − − Hoeffding Tree

MDD
DDM

EDDM

Fig. 5. Mean accuracy of the three tested methods on the “Random RBF”
data set.

be “in detection” is not reached. The assumptions that data are
i.i.d seem to be not valid here and/or the threshold settings for
the alert and detection difficult to tune. This conduces to a lack
of robustness. Our method, which has no threshold to tune and
no alert mechanism before the detection and do not use directly
the classifier, performs better on these experiments. The sub-
figure on the top (MDD) shows regular detections while the
hyperplane rotates.

V. CONCLUSION

In this paper we have presented an on-line method for con-
cept change detection on labeled data streams. Our detection
method uses a bivariate supervised criterion to determine if the
data in two windows come from the same distribution. Our
method has no assumption neither on the data distribution nor
on the change type and has the ability to detect changes of
different kinds (mean, variance...) and velocity.

Our method is able to detect a change (i) in the joint
distribution of an explanatory variable and the class variable;
(ii) in the distribution of an explanatory variable and (iii) in
the distribution of the class variable. Thus all the changes
in the conditional distribution of the class variable knowing
an explanatory variable can be detected. This method has no
threshold to tune, no alert mechanism before a detection and
do not use directly the classifier.

Experiments show that our method has better results than
well-known methods from the literature and exhibits a good
robustness and reactivity. Besides, except from the window
sizes, no user parameter is required in our method.

On-line learning, which processes instances one-by-one
and builds models incrementally, has the virtue of being fast,
both in the processing of data and in the adaptation of models.
Off-line (or batch) learning has the advantage of allowing the
use of more sophisticated mining techniques, which might be
more time-consuming or require a human expert. While the
first allows the processing of “fast data” that requires real-time
processing and adaptivity, the second allows processing of “big
data” with longer processing time and potentially more com-
plex and accurate models. Their combination can take place in
many steps of the mining process, such as the data preparation

 0
 1
 2
 3
 4
 5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Rotating Hyperplan (speed of 0.001) − naive Bayes classifier

MDD Detection

 0
 1
 2
 3
 4
 5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
 0

 5000

 10000

 15000

 20000

N
u
m

b
e
r

o
f
d
e
te

c
ti
o
n
s

N
u
m

b
e
r

o
f
a
le

rt
s

DDM Detection
DDM Alert

 0
 1
 2
 3
 4
 5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
 0

 5000

 10000

 15000

 20000

N
u
m

b
e
r

o
f
a
le

rt
s

Number of examples used to train

EDDM Detection
EDDM Alert

Fig. 6. Number of detections (red curves) and alerts (blue curves) versus the number of examples used to train for the different tested methods.

and the preprocessing steps. For example, off-line learning
on big data could extract fundamental and sustainable trends
from data using batch processing and massive parallelism. On-
line learning could then take real-time decisions from on-line
events to optimize an immediate pay-off.

In future work, we plan to investigate on combining off-line
learning, drift detection and on-line learning, to solve problems
such as on-line advertising or network attack detection.

REFERENCES

[1] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New
ensemble methods for evolving data streams,” Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and
data mining - KDD ’09, p. 139, 2009.

[2] I. Žliobaite, “Learning under Concept Drift: an Overview,”
https://sites.google.com/site/zliobaite/Zliobaite CDoverview.pdf,
Tech. Rep., Oct. 2010. [Online]. Available:
https://sites.google.com/site/zliobaite/Zliobaite CDoverview.pdf

[3] A. Bondu and M. Boullé, “A supervised approach for change detection
in data streams,” International Joint Conference on Neural Networks
(IJCNN), 2011.

[4] M. Boullé, “MODL: A Bayes optimal discretization method for contin-
uous attributes,” Machine Learning, vol. 65, no. 1, pp. 131–165, 2006.

[5] P. Matuszyk, G. Krempl, and M. Spiliopoulou, “Correcting the usage
of the hoeffding inequality in stream mining,” in In Proceedings of the
Twelfth International Symposium on Intelligent Data Analysis, 2013.

[6] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” Advances in Artificial Intelligence - SBIA 2004, pp. 286–295,
2004.

[7] M. Baena-Garcı́a, J. Del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà,
and R. Morales-Bueno, “Early Drift Detection Method,” Fourth Inter-
national Workshop on Knowledge Discovery from Data Streams, vol. 6,
pp. 77–86, 2006.

[8] M. Boullé, “Optimum simultaneous discretization with data grid models
in supervised classification: a Bayesian model selection approach,”
Advances in Data Analysis and Classification, 2009.

[9] V. Lemaire, “Real world issues in supervised classification for data
stream,” slides of a talk given at ECML 2013 - workshop RealStream,
September 2013, http://perso.rd.francetelecom.fr/lemaire/publis/ECML-
Pragues-vf-2013.pdf.

[10] C. L. Blake and C. J. Merz, “UCI Repository of machine learning
databases,” p. http://archive.ics.uci.edu/ml/, 1998. [Online]. Available:
http://www.ics.uci.edu/˜mlearn/MLRepository.html

[11] M. Boullé, “Bivariate Data Grid Models for Supervised Learning,”
France Telecom R&D, No NSM/R&D/TECH/EASY/TSI/4/MB, Tech.
Rep., 2008.

[12] P. Langley, W. Iba, and K. Thompson, “An analysis of Bayesian
classifiers,” in Proceedings of the National Conference on Artificial
Intelligence, no. 415, 1992, pp. 223–228.

[13] D. J. Hand and K. Yu, “Idiot’s Bayes?Not So Stupid After All?”
International Statistical Review, vol. 69, no. 3, pp. 385–398, Dec. 2001.

[14] G. Hulten, L. Spencer and P. Domingos, “Mining time-changing data
streams” in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 97–106 2001.

[15] J. Gama, Knowledge Discovery from Data Streams. Chapman and
Hall/CRC Press, 2010.

[16] Anonymous, “Anonymous,” Advances in Data Analysis and Classifica-
tion, 2012.

[17] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 71–80, ACM New York,
NY, USA, 2000.

[18] J. Gama, P.P. Rodrigues, R. Sebastiao and P.P. Rodrigues, “Issues in
evaluation of stream learning algorithms” in Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pp 329–338, ACM New York, NY, USA, 2009

[19] A Bifet, G Holmes, R Kirkby, B Pfahringer, “Moa: Massive online
analysis” in The Journal of Machine Learning Research, pp 1601–1604,
Volume 11, 2010

